3.77 \(\int \frac {2 x^2+x^4}{1-x^3} \, dx\)

Optimal. Leaf size=46 \[ -\frac {x^2}{2}-\frac {1}{2} \log \left (x^2+x+1\right )-\log (1-x)-\frac {\tan ^{-1}\left (\frac {2 x+1}{\sqrt {3}}\right )}{\sqrt {3}} \]

[Out]

-1/2*x^2-ln(1-x)-1/2*ln(x^2+x+1)-1/3*arctan(1/3*(1+2*x)*3^(1/2))*3^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 46, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.421, Rules used = {1593, 1887, 1875, 31, 634, 618, 204, 628} \[ -\frac {x^2}{2}-\frac {1}{2} \log \left (x^2+x+1\right )-\log (1-x)-\frac {\tan ^{-1}\left (\frac {2 x+1}{\sqrt {3}}\right )}{\sqrt {3}} \]

Antiderivative was successfully verified.

[In]

Int[(2*x^2 + x^4)/(1 - x^3),x]

[Out]

-x^2/2 - ArcTan[(1 + 2*x)/Sqrt[3]]/Sqrt[3] - Log[1 - x] - Log[1 + x + x^2]/2

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 1875

Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
 2], q = (-(a/b))^(1/3)}, Dist[(q*(A + B*q + C*q^2))/(3*a), Int[1/(q - x), x], x] + Dist[q/(3*a), Int[(q*(2*A
- B*q - C*q^2) + (A + B*q - 2*C*q^2)*x)/(q^2 + q*x + x^2), x], x] /; NeQ[a*B^3 - b*A^3, 0] && NeQ[A + B*q + C*
q^2, 0]] /; FreeQ[{a, b}, x] && PolyQ[P2, x, 2] && LtQ[a/b, 0]

Rule 1887

Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[Pq/(a + b*x^n), x], x] /; FreeQ[{a, b}, x
] && PolyQ[Pq, x] && IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {2 x^2+x^4}{1-x^3} \, dx &=\int \frac {x^2 \left (2+x^2\right )}{1-x^3} \, dx\\ &=\int \left (-x+\frac {x (1+2 x)}{1-x^3}\right ) \, dx\\ &=-\frac {x^2}{2}+\int \frac {x (1+2 x)}{1-x^3} \, dx\\ &=-\frac {x^2}{2}+\frac {1}{3} \int \frac {-3-3 x}{1+x+x^2} \, dx+\int \frac {1}{1-x} \, dx\\ &=-\frac {x^2}{2}-\log (1-x)-\frac {1}{2} \int \frac {1}{1+x+x^2} \, dx-\frac {1}{2} \int \frac {1+2 x}{1+x+x^2} \, dx\\ &=-\frac {x^2}{2}-\log (1-x)-\frac {1}{2} \log \left (1+x+x^2\right )+\operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )\\ &=-\frac {x^2}{2}-\frac {\tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{\sqrt {3}}-\log (1-x)-\frac {1}{2} \log \left (1+x+x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 54, normalized size = 1.17 \[ \frac {1}{6} \left (-4 \log \left (1-x^3\right )-3 x^2+\log \left (x^2+x+1\right )-2 \log (1-x)-2 \sqrt {3} \tan ^{-1}\left (\frac {2 x+1}{\sqrt {3}}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(2*x^2 + x^4)/(1 - x^3),x]

[Out]

(-3*x^2 - 2*Sqrt[3]*ArcTan[(1 + 2*x)/Sqrt[3]] - 2*Log[1 - x] + Log[1 + x + x^2] - 4*Log[1 - x^3])/6

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 37, normalized size = 0.80 \[ -\frac {1}{2} \, x^{2} - \frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) - \frac {1}{2} \, \log \left (x^{2} + x + 1\right ) - \log \left (x - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+2*x^2)/(-x^3+1),x, algorithm="fricas")

[Out]

-1/2*x^2 - 1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/2*log(x^2 + x + 1) - log(x - 1)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 38, normalized size = 0.83 \[ -\frac {1}{2} \, x^{2} - \frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) - \frac {1}{2} \, \log \left (x^{2} + x + 1\right ) - \log \left ({\left | x - 1 \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+2*x^2)/(-x^3+1),x, algorithm="giac")

[Out]

-1/2*x^2 - 1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/2*log(x^2 + x + 1) - log(abs(x - 1))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 38, normalized size = 0.83 \[ -\frac {x^{2}}{2}-\frac {\sqrt {3}\, \arctan \left (\frac {\left (2 x +1\right ) \sqrt {3}}{3}\right )}{3}-\ln \left (x -1\right )-\frac {\ln \left (x^{2}+x +1\right )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4+2*x^2)/(-x^3+1),x)

[Out]

-1/2*x^2-ln(x-1)-1/2*ln(x^2+x+1)-1/3*3^(1/2)*arctan(1/3*(2*x+1)*3^(1/2))

________________________________________________________________________________________

maxima [A]  time = 2.90, size = 37, normalized size = 0.80 \[ -\frac {1}{2} \, x^{2} - \frac {1}{3} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) - \frac {1}{2} \, \log \left (x^{2} + x + 1\right ) - \log \left (x - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+2*x^2)/(-x^3+1),x, algorithm="maxima")

[Out]

-1/2*x^2 - 1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/2*log(x^2 + x + 1) - log(x - 1)

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 51, normalized size = 1.11 \[ -\ln \left (x-1\right )+\ln \left (x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )-\ln \left (x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{6}\right )-\frac {x^2}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*x^2 + x^4)/(x^3 - 1),x)

[Out]

log(x - (3^(1/2)*1i)/2 + 1/2)*((3^(1/2)*1i)/6 - 1/2) - log(x - 1) - log(x + (3^(1/2)*1i)/2 + 1/2)*((3^(1/2)*1i
)/6 + 1/2) - x^2/2

________________________________________________________________________________________

sympy [A]  time = 0.31, size = 46, normalized size = 1.00 \[ - \frac {x^{2}}{2} - \log {\left (x - 1 \right )} - \frac {\log {\left (x^{2} + x + 1 \right )}}{2} - \frac {\sqrt {3} \operatorname {atan}{\left (\frac {2 \sqrt {3} x}{3} + \frac {\sqrt {3}}{3} \right )}}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4+2*x**2)/(-x**3+1),x)

[Out]

-x**2/2 - log(x - 1) - log(x**2 + x + 1)/2 - sqrt(3)*atan(2*sqrt(3)*x/3 + sqrt(3)/3)/3

________________________________________________________________________________________